ermouth: (ang)
ermouth ([personal profile] ermouth) wrote2016-08-18 11:45 am
Entry tags:

Задачка про лягушек и Маленького принца

Хорошая задачка вот с международной математической олимпиады 2016 (все задачки за все года вот тут).

Задача 6. На плоскости расположено n ⩾ 2 отрезков так, что любые два из них пересекаются по внутренней точке, а никакие три из них не имеют общей точки. Иван выбирает один из концов каждого отрезка и сажает в него лягушку лицом к другому концу этого отрезка. Затем он n − 1 раз хлопает в ладоши.

При каждом хлопке каждая из лягушек немедленно прыгает вперёд в следующую точку пересечения на её отрезке. Лягушки никогда не меняют направления своих прыжков. Иван хочет изначально рассадить лягушек так, чтобы никакие две из них никогда не оказались в одной точке пересечения одновременно.

(a) Докажите, что Иван всегда может добиться желаемого, если n нечётно.
(b) Докажите, что Иван никогда не сможет достичь желаемого, если n чётно.

----

Есчо, справедливо и для построения на 2-сфере (типа Иван – Маленький принц и живёт на маленькой планетке с жабами ггг). Соответственно вместо отрезков – ортодромы дуги геодезических линий (не обязательно кратчайшие).

[identity profile] morfizm.livejournal.com 2016-08-18 11:27 pm (UTC)(link)
За вторым перекуром я понял, что я гоню по поводу п.1: там больше одного способа. Эх. Да, хорошая задачка.